EXPERIMENT 1

FAMILIARIZING YOURSELF WITH THE KIM-l

The purpose of the first experiment is to acquaint
you with the mechanics of entering and running a program
in the KIM. The numbers we enter are not expected to mean
anything to us at this point in the course. 2 secondary
purpose of experiment 1 is to test the programmable timer
used by the KIM to load tapes.

The KIM uses MOS devices which can be damaged by
high static discharges. The board comes in a conductive
plastic bag which protects it from such damage. The board
is also relatively immune from damage when connected to a
power supply. Handle the board by its edges when moving
it from bag to power supply. Discharge yourself on any
convenient grounded surface, if you suspect that you may
'be carrying charge.

Power is applied through the lower edge connector
on the board. The connector is applied with the power
connections (red and black wires) at the top. Apply the
power -connector to the board BEFORE the power supply is
plugged into AC power.

1. Upon powering up the KIM, push the Reset button labeled
RS. This should cause the display to light. This indicates
to us thet the XKIM's monitor program is running. The KIM
display, like the display of a calculator is generated one
digit at a time. By multiplexing the digits at a2 high rate,
a continuous display is observed. Between the display scans,
the XIM monitor multiplexes the keyboard to determine if
a_key has been pressed. A key closure is serviced when it
is found. Ocasionally, due to external electrical noise,
but more frequently due to operator error, the computer

will leave the monitor or user program and quit executing
code altogether. The computer is said tc have'bombed”.

No damage is done. The computer is set on the track again
by pressing the RESET button. The RESET button is also

used to terminate execution of a2 user program and return
control to the monitor program,

2 Place the slide switch on the keyboard in the OFF
position. This switch has nothing to do with power and
is used to enable a "debug" feature which we will inves-

tigate in the future. Similarly, refrain from pressing
‘the ST or STOP button, until its use has been explained '
in the course.

3. The numbered keys O thru F are used to enter either
address or data information. Reset puts the monitor in

the address mode. The address mode can alsc be obtained

by pressing the AD or address mode key.

Having done this, press the numbered keys and cb=-
serve:.that the numbers shift in right to left (calculator
style) in the leftmost four digits of the display. The
left four digits represent an address. The right two digits
represent the data at that address. Leave the address '
with $0000 in the display. The two right digits are the
data located at memory location $0000,

4, Press the DA or datz mode key. MNothing appears to
happen. However, now when the numbered keys are pressed,
the address remains at $0000 and instead the data changes.
This tells us that location $0000 is read/write memory,
more commonly called RAM. Leave location $0000 with data
$A9, '

S. It would be very cumbersone to have to enter each
address when entering a program. Fortunately that's not
necessary. Press the button labelled "+", Note that

PLUS advances the address one location. The PLUS function
is insensitive to mode. We are still in Data mode and may
now enter data at $0001 without having to press the DA
button again. Enter data $FF at $0001.

6. Using the PLUS hutton to access consecutive addresses,
enter the program found on the following page.

7. How do you know that you have entered the program
correctly? To check, go back to location $0000. We get
there by pressing AD for address mode and keying in $§0000,
We should observe the $A9 which we entered there previously.
Just hit PLUS to see the next location etc. If we encoun-
ter an error, we just enter the correct data. But don't
fcrget to first hit the DA key. It's easy to leave out
data., Be sure that the address and datz agree at the end
of the program. Check through at least twice that you

have entsred the program correctly.

ADDRESS DAT2A

$0000 $29
$0001 SFF
$0002 $8D
$0003 $47
$0004 $172
$0005 $20
50006 $19
$0007 S1F
$0008 $2C
$0009 $47
$S000A $17
SO0O0B s10
$000C SF8
$000D $20
SO0QE $63
$SO0OF $1F
$0010 $DO
S0011 SEE

8, After you are satisfied that the data has been entered
correctly, you are ready to run the program. Aas you might
have guessed, the program starts at $0000. Press AD and
enter . $0000, The program is executed by pressing the GO
button. In this program, the display will remain lit if
the program has been entered correctly. If the display
goes blank, the computer has "bombed". Hit RESET to get
back into the monitor and carefully recheck your code.

EXPERIMENT 2

INPUT/OUTPUT - KIM-1 and USER

The purpose of Experiment 2 is to introduce the
subject of Input/Output. We will be connecting external
I/0 to the KIM using the two user programmable ports.

We will also investigate the input built into the KIM
board, namely the keyboard, and the output, namely the
six digit seven segment display.

All of the remaining experiments will make use
of the two user programmable ports on the XIM, Port A,
and Port B. A very thorough description of these ports
is to be found in the section called INPUT/OUTBUT. For
simplicity, we will hereafter use Port A as an output
port. A row of eight individual LEDs is connected to Port
A to serve as an output indication. A row of four slide
switches is connected to the low four bits of Port B which
will be used only as an input Port.

In the I/0 discussion we found out that both the
programmable ports are initially configured as input ports
by the RESET function. Therefore it will only be necessary
to program Port A as and output port. A

1. Key in the address $1701. This is the data direc-
tfon register of Port A, Note that it is presently $00.
Hit DAta and enter $FF. It is now configured as an output.
Hit ADdress and-enter $1700. Be careful not to hit RESET.
Now hit DA and enter any data. You can now observe the
dataayou entered on the external LEDs. See what the var-
jous hex characters look like. Hit reset. Note that $FF
appears, since Reset programs port A as an input port.

Hit DA and try to enter data, You can not. Toc cbserve
data you will have to go to $1701 and again write §FF.

2. Enter Address $1702. This is Port B Data. Port B
has already been configured as an input port by Reset.
Use the four slide switches to affect the low four bits of

Bort B.

¥
PR

3. Input for the stand-alone KIM is the on-board key-
board. The XKIM checks for a key being pressed by a routine
in the Monitor programs called GETKEY, located in ROM at
location $1F6A, Since GETKEY is a subroutine, we are free
to use it for our purposes. A complete listing of the KIM
monitor programs can be found in Appendix I of the KIM=-l
Userks Manual. GETKEY in particular can be found on page
26. GETKEY uses the add instruction, and assumes that the
computer is already in the binary mode. Thus the user
should clear the decimal mode prior to calling GETKEY. If
we look at the comments in the listing we see that GETKEY
returns with the value of the key pressed in the "A" regi-
ster. If no key is pressed, $15 is left in A. :

To illustrate GETKEY, let us propecse the following
program, First configure Port A as an output port so that
results can observed on the discrete LEDs. Now use GETREY
and display the result at Port A, cycling continuously. It
is customary to show the flow in a program using a flow

chart.
[SET BINARY l
MODE.

ESTABLISH
PCRT A
AS OUTPUT

From the flow chart, we now write dewn the instruc-

tions which will accomplish the desired program. We use
_the manufacturex's symbology or mnemonics for the instruc-
tion names, and invent our own labels for hardware addresses
and instruction locations which are reference by the pro-
gram. This format is called assembly language, Finally,

we go back and look up the codes for the instruections and
£ill in any address arguments. This last process is called
assembling. A program which would do this to text which

we enter through a terminal is called an assembler. We will
be doing all of our assembly by hand.

ORIGIN = S$S0000 Program begins here
GETKEY = $1F6A :
PADD = $1701 Port A Data Direction
PAD = $1700 Port A Data

$0000 D8 START CLD Set binary mode

$0001 A2 FF ; LDX# SFF

$0003 8E 01 17 STX PADD Make Port A Output

$0006 20 6A 1F LOOP JSR GETKEY get key

$0009 8D 00 17 STA PAD Send to Port 2

$000C 4C 06 QO JMP LOOP

In this format, which is traditional assembly lan-
guage format, there is one instruction per line, which may
take one, two, or three bytes of code (and address locations).
Since the addresses are not consecutive, it is very easy to
make mistakes. It may prove easier initially to write the
program with one byte per line as below. Of course, care
must be taken to leave the proper number of lines for a par-
ticular instruction.

$0000 D8 START <CLD
$0001 AZ LDX#
$0002 FF SFF
$0603 8E STX
$0004 01 PADD
$0005 17 - -
$0006 20 JSR
$0007 63 GETKEY
$0008 1F : ——
$0009 8D STA
$000A 00 PAD
'$000B 17 ———
$000C 4C JMP
$000D 06 LOOP

SQ00E 0O =t

Note that in the instruction column, a dashed line
is used to take up the space of a third byte in three byte
instructions. Note that by using labels for instruction
locations, we can write a program without having to know in
advance at what memory locakion a particular instructiocn
will £fall,

4, The KIM's primary output is a six-digit seven seg-
ment LED display. The KIM uses the display mainly to dis=-
play the data in a2 particular memory location. A program
called SCAND at $1F1l9 reads the data at the location pointed
at by the address pointer, stores it in a zero page location
(INH $00F9) and then causes the address pointer and the mem-
ory contents to be displayed on the six digit display. The
low part of the address pointer {called POINTL in KIM soft-
ware) is location $QOFA, The high part of the address
pointer, called POINTH, is $00F8., The program starting at
location SCANDS (S1F1lF) causes the data in the three zero
page locations referenced to be displayed as three pairs

of hex digits., . :

The user may in fact store his own numerical infor-
mation in these zero page locations and use SCANDS to dis-
play it. Note, however, that SCANDS multiplexes the dis-
play just once which lasts only a few milliseconds. To
observe a continuous display, SCANDS must be called repeated-
ly. The program that follows causes three arbitrary ceon-
stants to appear on the display. Execute this program to
see the result. .

$000F AS LDA%H Load first number

$0010 01 $01

$0011 &5 STA Store it in left display
$0012 FB POINTH

$0013 A9 LDA# Load second number

$Q014 02 $02

$0015 85 STA Store it in middle

$001e FA POINTL

$0017 AS LDA# Load third number

$0018 O3 $03

$0019 85 STA Store in ¢on right

$001A P9 INH

$001B 20 LOOP2 JSR Call the display routine
$§001c 1IF SCANDS

.$001p 1F ——

$001E 4C JMP Loop back

$001F 1B LOOP2

$00290 QO ——

5. Modify the program sec that constants of your
choosing appear in the display.

‘6. Finally, vyou might try to combine the earlier
program using GETKEY, with the last program such that
the number of the key pressed appears across the display.
For example, if you press "1", the display should read
010101. ‘

It might help quite a bit to sketch out a flow
chart of this new program which combines two programs.
You may find that you would like to remove an instruc-
tion without having to move everything else up. Any
unwanted byte can always be replaced with a one byte
instruction that does nothing. Most computers have such
an instruction called a No-operation or NOP. The 6502
has an NOP with code $EA,

EXPERIMENT 3

INPUT/OUTPUT - CONTROLLER APPLICATION

In this experiment, we will use the XIM as a con-
troller in a real-world application., Even though the
example program is a gross simplification of a. real pro-
blem, it will give us a good idea how computers are used
in controller applications. We will use the LEDs con-
nected to PORT A to indicate our Cutputs. We will use
use the switches connected tc PORT B to indicate the
real-werld inputs,

1. The controller's function is to periodically re-
£ill a tank (on demand). A £ill valve will open whenever

a "tank low" switch is activated. The fill valve will
close when the "tank full" or "tank near overflow" switches
are activated. If the latter occurs, in addition to clo=-
sing the fill valve, a drain valve will open and an alarm
will sound.

Using the above statement of the problem, we can
now draw a flow chart. Then we can use the flow chart to
write a program in assembly language. Finally, we assemble
the program. The figure below defines the function of the
individual input and output bits, relative to the LEDs and
switches.

ALARM

DRAIN OPEN FILL VALVE
/- / OPEN

cNoNoNoNoNORONO,

dlallalo
' \ \ M\ 7aNK NEAR OVERFLOW

TANK LEVEL LOW
TANK FULL

INITIALIZE
PORT 2

READ
INPUTS

TANK NEAR

OVERFLOW? =

N

OPEN
FILL VALVE

TANK FULL CR
NEAR OVERFLOWZ

CLGCSE
FILL VALVE

E-10

CLOSE VALVE
OPEN DRAIN
SCUND ALARM

2. hAssembié the program which follows. You will have
to calculate the relative offsets for two of the branch .
instructions. ©Note that in the main loop of the program
the input information is loaded and rotated right twice.
The figure below shows the results of these operations.

X X X x x x L A] (after load)

[2] [x x x = x x x L (after 1 rotate)
[T]

A _x x x X x X X| (after 2 rotates)

$0000 pz O START LDX# $00
$0002 FE w2 1T STX PAD
$0005 <A ~ DEX '
$0006 I ol 17 STX PADD
$0009 AD 82 17 MAINLP LDA PBD
$000C LA ROR A
spoop oA ROR A .
$O000E v 0% BMI ALARM
$0010 AY &o LDAa# $00
$0012 § 20 12 STA BAD
$0015 B2 o3 BCS FILL
$0017 P00 Eo- BCC MAIMLP
$0019 A9 L2 ALARM LDA# $CO
$001B 30 o9 /7 STORE STA PAD
$Q01E £ 23 28 JMP MAINLP
$0021 2 22 12 FILL LDA PAD
$0024 Qg ORA# $01
§0026 g2 Qo L2 STA PAD
$0028 A ad 12 TEST LDA PBD
$002¢ 29 Q9 AND# $09
$002E fo F9 BEQ TEST
$0030 AD oo L2 LDA PAD
$0033 49 FE=E AND# SFE
$0035 & 12 oo JIMP STORE
3. Although this program may be run at full speed,

it will be easier to follow if you single step it. What
must be initialized before Single Step is operative?

EXPERIMENT 4

SOFTWARE TIMING

In this experiment, we will investigate the pos-
sibility of using our knowledge of the time it takes to
execute any instruction to generate very precise timing.

l. The 6502 microprocessor chip-on the KIM-1 com=-
puter board, like most microprocessors, runs off a cry-
stal oscillator. The frequency of the crystal is 1.000
MHz and is quite stable, giving a clock cycle of on micro-
second. The exact number of cycles that any instruction
takes is documented for the user, and is in fact available
on the programming card, Thus, by counting up the number
of clock cycles in each instruction, we may determine
exactly how long a particular program takes to execute
right to the microsecond. Look at the following sample

program.

cycles
LDX# $64 2 (6x16 + 4 = 100 decimal)
LoOP DEX 2.
" . BNE LOOP 3

The first instruction, which initializes "X", is executed
only once for a fixed 2 microseconds, Each pass through
the loop takes (2 + 3) five microsecénds. The loop is
performed 100 times for a total of 2 + 100({5) = 502 micro-
seconds. Correct? Not guite. ©On the last pass through
the loop, the branch is pot taken, and a branch takes only
2 microseconds, if the branch is not taken. Thus the pro-
gram above takes exactly 50l micro seconds. Now censider
the discrete electronic hardware that would be required

to produce a precise, temperature stable delay of 500
microseconds. It certainly would be more expensive than
the couple of instructions it takes to do it very precisely
with software.

2. Now consider the following program. It terminates

by jumping back into the KIM monitor, The entry point used
is $1C4rF.

E~-12

START LDXE SFF
STX PADD
INX)
STX PAD
LDX# $09
LooP INC PAD
DEX
BNE LOOP .
JMP MON ($1C4F)

The first four instructions of the program estabklish Port A
as an output, and clear the data in Port A, The "X" regi-
ster is imjtialized to the value nine before dropping into
a loop in which "X" is used as a counter and decremented

to zero. The only action in the loop is imcrementing Port
A. Thus after Port A has been incrémented nine times {from
zero) the program jumps back to the monitor. What should
we expect to see if we execute this program? If we add up
the number of clock cycles, we will discover that the pro-
gram executes in less than 120 microseccnds, or about one
tenth of a millisecond. If we are looking at the six digit
display, it will be extinguished only for the tenth milli-
second to execute the program before it is again being
scanned in the monitor. In fact, with such a short absence
it won't appear to even flicker. Similarly, if we loock at
the discrete LEDs, the number $09 will appear. We will
not, of course, see the LEDs count. We can, however,

see the program work if we Single Step. There is ancther
way, though, Why don't we just slow dewn the program with
software? In other words, why not insert some code inte
the loop that will consume encugh time each pass through
the loop so that we can see the results?

3. Consider the following pregram:

START LDA# SFF
STA PADD
LDA# $00 e
DISPLAY STA PAD C
» CcLC = o2 17 e
ADC% $O1 . (¥
JSR DELAY .. o ol

JMP DISPLAY ’

This program, like the previcus example, causes the external
LEDs to count. However, note that the count does not ter-
minate, but goes on forever., Also note, that within the
loocp is an instruction JSR DELAY. This causes us to leave
the loop for scme fixed amount of time. Assemble the above
program 3t a RAM location of your choosing. You will need
to leave spaces for the address of the subroutine called
DELAY. '

4. A little earlier, we saw that it was an easy matter
to generate a half millisecond delay with a three instruc-
tion program. Clearly we can put this little program in

a bigger loop and generate some number of half millisecond
timeoperiods. The program which follows uses this tech-
nigueto generate 200 half millisecond = 100 milliseconds

= one tenth second delay. Assemble this program at a RAM
location of your choosing. (You mow know what address to
fill in, in the program above where you JSR DELAY,)

avos fo OF DELAY LDY# $C8 (200 decimal)
s Az &5 LOOPY LDX# $63 %
24 oA LOoPX DEX
g5 e Do _E_L} , : BNE LOOPX
07 2% DEY
or ai_ Do B g% BNE LOOPY
D) Lo RTS
5. Note that the delay produced is a function of the

initial values of X and Y. Use different values of X and
Y to get longer and shorter delays. What values of X and
Y will produce the longest delay.

6. " The action in the main loop is produced with the
CLC, ADC# instructions. Try substituting these three bytes
with other instructions, for example, CLC, SBC#, or RORa,
or ROLa. If you use less than three bytes, be sure to use
NOPs to fill the gaps. What happens when you use $63, $66,
'$66 for those three bytes?

7. Can you verify that the total time delay for the
subroutine above is: T = Y{(5X + 6} + 13%

E-14

EXPERIMENT 3

HARDWARE TIMERS - INTERRUPTS

In this experiment we will investigate hardware
timers, and use one to run a program on an interrupt basis.

j Each of the 6530 chips on the KIM-1 has a2 program-
mable timer. One is not used by the KIM menitor programs,
and like the two ports, is available for user applications,
This timer has base address $170X, where X depends on the
timer function required. When we are not using the tape
dump and load routines from the monitor, there is no rea-
son why we can't use the second timer as well. Thus, every-
thing about the timer in the discussion that follows also
applies to the second timer. The only thing that changes

is the base address which is $174X.

2. A string of flip-flops can be so connected to form
a binary counter. On the right we see the se-~ 0000
quence generated by such a counter of four bits. 0Gc0l1
Note that the least significant bit alternates - 0010

0~1=0=1-0=-1 etc, The next least significant bit 0011
alternates 0-0-1-1=-0-0-1-1~0-~0 etc. FEach flip- 0100
flop alternates between one and zero uniformly, 0101
however, each succeeding flip-flop changes at T 0110
half the rate of its predecessor. Thus the input 011l
clock is divided in two in frequency by the first 1000
flip-flop which is in turn divided by two by the 1001

second flip-flop, Thus in a string of N flip- 1010
flops, the Ntthlip—flop is dividing the input 1011
frequency by 2 . For example, three stages can 1100

be used to divide by eight, four stages to divide 1101
by sixteen etc. This is of course the principle 1110
behind an electronic watch, This same principle 1111
is used to make rather complex timer chips for use with

. mieroprocessors. Such a chip has one or more timers that
can be configured in a variety of ways with software.

The timers in the 6530 chips have the structure
shown in the figure which follows. Since it is easiest
to count events by loading a count and counting down to
zero, the heart of the timer is an 8-bit downcounter.

1l MHz

+1024 i a1
4

.{ l
N
‘-.l
5
<

8-bit DOWNCOUNTER

IRQ w

|
» 'LH|||
o _
DATA BUS

The clock which drives the downcounter is one of four sel-
ected rates. The fastest rate is the microprocessor's

1 MHz crystal clock. This clock is alsoc applied to a tap-
ped binary dividing chain, giving clock periods of 1, 8,
64, and 1024 microseconds., The last, and slowest clock is
about one milliseconds, giving a maximum timable delay of
about one gquarter second.

To use the timers the number of intervals to be counted is
written to the downcounter via the data bus and the down-
counter begins counting dewn. When the counter reaches a
count of zero, a ninth overflow bit is set. This bit can
be used in cne of two ways. It can be polled by reading
+he timer address on the MSB of the data bus, or the bit
can be directly used to generate an interrupt. This choice
is a function of address bit A3. Address bits 3; and 3,
are used to select the clock rate. Thus a total of eleven
bits of information are programmed, three bits using the
address bus. The table which follows shows what addresses
should be used to select the counting rate and interrupt
capability. (A more complete descripticn of interval timer
operation can be found in Appendix H of the KIM Users Manual.)

Divide Ratio No Interrupt Interrupt

1 $1704 §l70C
8 $170s $170D
64 $1706 $17CE
1024 $1707 , $170F
3% En the programs that follow, two asynchronous o-

counting cperations are going on simultaneocusly. The
six digit seven segment display is incrementing at one
rate in decimal, The external discrete LEDs are incre-
menting in binary at an unrelated rate. The rate of the
six digit display is determined by software timéng, the
external display is serviced on an interrupt fzom the
programmable timer, Lecad in the main program as fcllows.

$0000 a2 40 INIT LDX# $40
$0002 8E FE 17 STX $17FE
$0005 A2 00 LDX# 300
$0007 B8E FF 17 STX $17FF
SC00A 86 F9 STXZ $F9
$000C 86 FA STXZ SFA
$O00E 86 FB STXZ S$FB
$S0010 €A ' DEX

$0011 8E 01 17 STX PADD
$0014 8E OF 17 STX TIMER
$0017 58 CLI

$0018 F8 SED

$0019 38 MAINLP SEC

$0012 A2 FD LDX# $FD
$001C¢ Bs FC ADD LDAZX $FC
$001E 69 00 ADC# $00
$0020 95 FC STAZX $FC
$0022 90 03 BCC NEXT
$0024 ESB INX

$0025 DO FS BNE ADD
$0027 A9 20 NEXT LDA# $20
$0029 85 80 STAZ $80
$0028B 20 1F 1F SCANLP JSR SCANDS
$0Q2E C6 80 DECZ $80
$0030 DO F9 BNE SCANLP
$0032 FO ES BEQ MAINLP

What location affects the timing of the main loop?
Change this value to spped up or slow down the main
display. Does it affect the external display?

E-17

30040
30041
$0044
$0045
$0046
$0048
$004A2
$004D
$0050
$0051

The interrupt from the timer causes .the following
program to be executed.
programs are not contiguous.

48
AD
oA
oA
jrlej
AS

8D
EE
68

40

o

02

02
FF
OF
00

17

17
17

IRQ

DONE

PHA

LDAa PED
ASL A

ASL A

BNE DONE
LDA# STFF
STA TIMER
INC PAD
PLA

RTI

Note carefully, that the two

SAVE A REG
READ SWITCHES
MULT X 4

MAX TIME

COUNT
RESTORE A REG

Tzy to determine exactly how the switches on the
Port B affect the external counting rate.

Did you remember to install the interrupt vector?
That is, did you put the location of your IRQ program in
RAM locations $17FE and $17FF?

E-18

BINARY, HEXIDECIMAL AND BCD NUMBERS

BINARY
0000
0001
0010
0oll
0l1lc0
0101
0116
011l
1000
1001
1010
1011
1100
1101
1110

1111

Addition:

olo ='e

0

1

DECIMAL

rheoo

[
o O

’_.l
[R e =

SOURCES OF MICROCOMPUTER INFERMATION

General Purpose Magazines

BYTE

70 Main Street

Peterborough, N.H. 034358

$15 a year, monthly, hardware and software

KILOBAUD
Peterborough, N.H. 03458
$15 a year, monthly, hardware and scftware

6502 Periocdicals

User Notes: 6502

P,0, Box 33093

N. Royalton, OH 44133

$13/6 issues, hardware and software for 6502 computers

MICRO: 6502 Journal

P.0. Box 3

S. Chelmsford MA 01824

$6/6 issues, bimonthly, hardware and software for 6502

Softwa;e Sources

6502 Program Exchange
2920 Moana

Reno, Nevada 89509
$.50 for program list

Pyramid Data Systems

6 Terrace Avenue

New Egypt, NJ 08533

Software, tapes, 5/$3.30 (10 min.) 5/$3.60 (20 min)

Micro-Ware Ltd.
27 Firstbrooke Road
Toronto, Ontario
CANADA M4E 2L2)
Microchess for KIM, $15, excellent assembler $25

Bardware Sources

Johnson Computer
.0, Box 523
Medina, OH 44256 line of accesories for XIM, 8K BASIC

Riverside Electronic Design, Ine.
1760 Niagara Street
Buffalo, N.Y¥Y. 14207

See also MICRO under 6502 periodicals

See also ads in KILOBAUD and MICRO

Micro Technology Unlimited
P.0. Box 4596
Manchester, N.H. 03108

Dot matrix video display, music board

Pickles & Trout
P.0. Box 11206
Goleta, Ca.93017

Kit $20 to make video monitor out of Hitachi B&W T.V.

